
Caching in Dataflow-Based Environments

Eli Steenput, Yves Rolain
Dept ELEC

Vrije Universiteit Brussel
Pleinlaan 2

1050 Brussel, Belgium
esteenpu@vub.ac.be, yrolain@vub.ac.be

ABSTRACT
Caching can result in significant time savings in
applications where repeated executions with slightly
altered settings or algorithms are frequent. Dataflow
information, as available in dataflow-based virtual
instrumentation environments, can be used to reduce
cache overhead and to limit the cache space required.
Different caching schemes are proposed, and methods are
presented to determine the caching scheme best suited for
a particular algorithm, based on graph properties.1

1. Introduction

A measurement set-up is often repeatedly executed
with slightly different settings for the measurement, data
processing and representation. In the development phase,
these changes can include adjustments to the program.
During repeated executions, some time-consuming
operations may be executed more often than necessary.

To prevent the redundant execution of an operation, its
previous arguments and the corresponding results can be
stored in a data cache, so that when the current
combination of argument values is found in the cache, the
corresponding result can be retrieved instead of being
recalculated.

Cache lookup will create some overhead, and because
data can be quite large in a measurement or modelling
environment, caching all intermediate results is not always
feasible. Data dependency information can be used to
reduce the necessary cache size and cache lookup
overhead. In measurement environments based on virtual
instruments, the dataflow information of the algorithm is

1 This work was supported by the Flemish Government (GOA-

IMMI), and the Belgian Program on Interuniversity Poles of Attraction
initiated by the Belgian State, Prime Minister’s Office, Science Policy
Programming (IUAP4/2).

readily available. There are several advantages to caching
integrated in the execution scheme of a dataflow-based
environment. If each node has a cache to store its last
result, the cache look-up overhead is eliminated, since
each cache contains just one value. A node in a dataflow
based program must store its result anyway until its
downstream neighbours are ready to execute.
Additionally, there is no need to store previous arguments
with the cached result for comparison, the validity of a
node’s cached value can be determined from the validity
of the nodes it depends on.

2. Caching schemes

Three different caching schemes will be presented,
each comparing new values to cached results for a
different number of nodes.

2.1 The MinCache scheme

Suppose each input terminal compares a new setting
with the previous value. If the new setting is the same as
the previous value in the cache, the data is marked
“unchanged” before it is passed to other nodes of the
dataflow graph. A node that receives only unchanged data
on its input arcs does not have to execute. Its cached result
is still valid and can be re-issued, with an 'unchanged' tag
added to it. This simple scheme prevents needless
execution of operations that do not depend on a changed
input terminal.

Not every node needs to cache its result. This can be
explained as follows:

A thread is defined as a set of the largest number of
connected nodes depending on an identical sets of input
terminals. Each node in the graph belongs to exactly one
thread (or constitutes a thread by itself).

Nodes in the same thread all depend on the same input
terminals. When one of the nodes in a thread has to be

recalculated, all of them require recalculation. Under these
assumptions, only the ‘end’ nodes of the thread (which
deliver arguments to nodes not belonging to the thread)
benefit from caching. This permits a reduction of the
number of caches, without reduction of caching
efficiency. The number of threads in a graph will
determine the number of results that require caching, and
the required cache space. The name of the scheme refers
to the use of the minimum amount of cache space required
to avoid the execution of operations depending on
unchanged inputs.

The cost reduction that can be achieved by caching, is
calculated as follows:

If a node depends on p input terminals, and assuming
all input states are equally likely, the probability that a
node is affected by a change to the input terminals equals
� �� �� . This is easily derived: suppose the number of
input terminals of the graph is i. The number of possible

input states is
�

�
�

�
��

�
�

�
�
� �

�

	
�

� (with k the number of changed

inputs). If a node depends on p input terminals, the
number of possible input states where none of the p inputs

changes is
� �

��

� �
� ���

�
�

�
�
� �

�

�

�	
�

� . The probability that one of

the node’s inputs changed is thus
� �

�
� �

� � �

�

��
� �

�

� .

The MinCache calculation cost can be obtained by
multiplying the cost of each node with the probability of
its execution, and summing the obtained values. The cost
without caching is simply the sum of the costs of all
nodes. The only overhead consists of comparing new
input settings (data fetching etc. are performed anyway in
a dataflow environment).

2.2 The MaxCache scheme

If nodes sometimes produce the same output for
different argument values, it is useful to compare a newly
calculated result with the previous value in the cache.

Suppose each node (or input terminal) has an
associated cache to store its last value. An executing node
can compare its new result first with the cached value. If
the new result is the same as the previous value in the
cache, the result is marked “unchanged” by a tag that is
added to the data. A node that has only unchanged
arguments does not have to execute. Its cached result is
still valid and can be re-issued, with an 'unchanged' tag
added to it.

This scheme stops execution on paths depending on a
changed input where some of the intermediate operations
yield the same results (relational operators for example
often produce the same result for different input values).

Note that cache comparison is limited to newly
calculated results. If all input terminals have unchanged
values, not a single comparison takes place downstream of
the input terminals.

To calculate the MaxCache cost, for each node n the
probability of producing the same value for changed input
arguments must be known. This probability will be called
rn. To determine the calculation cost of an interaction, the
cost of a node n is multiplied by the probability Pn that the
node will be executed (provided it depends on a changed
input). Several cases must be distinguished in the
MaxCache scheme:

An input terminal has no associated calculation cost,
and is not “executed”, it can only be assigned a new
(changed) value. A node that has input terminals as
arguments, must execute if one of the input terminals
changed. So for an input terminal i, ri = 0, Pi = 0 if the
input is unchanged and Pi = 1 for a changed input.

A node n is executed if any of its arguments a was
executed (probability Pa), and, upon execution, produced a
new (changed) value (probability 1-ra).

This gives for a node n that is not an input terminal:

� � � �� ����� ����� �����
������ �

� � � � �� �� � ����	 ��	 ��	
��	
 �

����������	
����
�

���
��
�������� ����������	
����
����
��������
��
�
��
���������

����������	
����
��������
��
���
������������������	
����
��������
��
��������
���
���������

This is no longer a simple calculation, and the
probabilities r will have to be estimated. Also, Pn depends
on the structure of the subgraph leading to n.

2.3 The MedCache scheme

This is a hybrid scheme, that caches only the end nodes
of threads just like the MinCache scheme, but compares
new results for these nodes with the cached values as in
the MaxCache scheme. This way execution on paths
depending on a changed input where some of the
intermediate operations yield the same results is stopped
at the first thread end node. The scheme needs only the
minimum required cache space.

3. Performance of caching schemes

Because only a limited number of graphs were
available for analysis, performance measure were
obtained by simulations on random generated graphs.
Modifications to the graph were not simulated, only
changes to the input settings.

To compare different graphs and draw general
conclusions, some quantitative properties, representative
of each graph, must be derived. These properties should
be easy to determine and promote understanding of the
factors affecting performance.

The performance and overhead of a specific scheme
will not only depend on the properties of the dataflow
graphs (such as the distribution of compute times and data
sizes, the number of inputs and the graph connectivity),
but also on the unpredictable sequence of user
interactions.

The graph properties that affect performance can be
divided into node properties and structural properties.

The node properties are:
1. the node’s calculation cost,
2. the probability to yield the same result for different

inputs (the average value for the graph is called the
ChanceFactor from now on),

3. the overhead required to compare this node’s result
with the cache.

Simulated cost and result lookup overhead are
normalised relative to the average node cost and node data
size of the graph. The absolute value of these parameters
has no influence on the effectiveness of the caching
scheme. This leaves the ChanceFactor as the only
(averaged) node property that influences the caching
performance.

The structural properties of dataflow graphs can be
represented by various parameters. The calculation cost
will of course increase with graph size (=number of
nodes), but if all size-dependent values are normalised for
graph size, normalised performance measures appear to be
almost size-independent. The following parameters were
selected:
1. the InputFraction or number of inputs relative to

graph size,
2. the BranchFactor or average number of output arcs

per node,
3. the ThreadFraction or number of threads relative to

number of nodes.
The interaction will affect the performance through the

number of input terminals that are changed in the
interaction. The fraction of changed inputs is called the
ChangedFraction.

A dataflow execution system can be data driven or
demand driven, but it was found that the execution system
doesn’t significantly influence the relative performance of
the caching schemes (it does influence overall
performance).

4. Influence of graph structure on
calculation cost

4.1 Cost dependency on the InputFraction

The higher the InputFraction (number of input nodes
relative to graph size), the higher the cost. Note that the
simulated results assume a uniform distribution of input

terminals. Equally-sized graphs with fewer inputs have
fewer and longer threads than those with many inputs, so
the effect of one unchanged input on the calculation cost is
more pronounced. In the MaxCache scheme, detecting
nodes that produce the same results for changed inputs is
more effective for graphs with long threads. For very high
InputFractions, the majority of nodes are input terminals
and the costs are virtually identical for all caching
schemes.

��

���

����

��
��
��
��
	�
�	
��
��

	
��
��

��
��
	�
�
��

����	
��	��
��

�� ������ ������� ���

���	��� ���	��� ���	���

�
��	���

�
��	���

�
��	�����
�	���

��
�	���

��
�	����	��	���

�	��	���

�	��	���

������	��
��

� � � � �

��	����	����

Figure 1 Effect of graph properties on
calculation cost

4.2 Cost dependency on the BranchFactor

Increasing the BranchFactor will cause an increase in
graph interconnection, and the graph will consist of more,
shorter threads. For the maximum BranchFactor value, all
nodes are interconnected and each node depends on all
input terminals. Caching is almost useless in such a graph,
since a change to any one input always requires
recalculation of the entire graph.

4.3 Cost dependency on ThreadFraction

Caching is most effective in graphs consisting of few,
large threads, where each thread depends on a small
fraction of the input terminals. For very high
BranchFactor values, the ThreadFraction decreases with
the BranchFactor while the cost continues to increase until
every node depends on all input terminals. All nodes then
belong to one single thread. However, these unrealistically
high BranchFactors are of little relevance to measurement
environments.

The plots of cost vs. InputFraction will change
considerably when the BranchFactor is varied, and the
cost vs. BranchFactor plots will similarly depend on the
InputFraction. In contrast, the behaviour of the calculation
costs as a function of the ThreadFraction shows a great
similarity for a very wide variation of graph structures.
Despite its behaviour for high BranchFactor values, the
ThreadFraction parameter has a high potential to explain
the influence of graph structure on performance.

5. Influence of node and interaction
properties on calculation cost

��

���

����

�� �������

��
��
��
��
	�
�	
��
��

	
��
��

��
��
	�
��
�

����	
�

�
���	
�

�����	
�

�����	
�

	
��	���	���

�� �������

����	
�

�
���	
�

�����	
�

�����	
�

	
��������	�
��

Figure 2 Effect of node and interaction
properties on calculation cost

5.1 Cost dependency on the ChanceFactor

After normalisation, the only node property influencing
the caching scheme is the ChanceFactor. If the
ChanceFactor is zero, the three caching scheme should
result in identical calculation costs. A low ChanceFactor
(corresponding to most executed nodes producing changed
values) will yield a MaxCache cost as high as the
MinCache cost. The difference between MaxCache cost
and MinCache cost increases with increasing
ChanceFactor. This makes sense, since the MaxCache
scheme detects the nodes that produce the same results for
changed inputs. As expected, the MedCache scheme
results in a calculation cost somewhere in between those
of MinCache and MaxCache.

5.2 Cost dependency on ChangedFraction

The only interaction parameter affecting the cost is the
fraction of changed input values. The MinCache cost
varies from 0% of the NoCache cost when no inputs have
changed to 100% when all inputs have changed. The
MaxCache and MedCache costs can be smaller than
NoCache cost even when all inputs have changed. This
can be attributed to the skipping of parts of the graph due
to nodes producing unchanged results upon execution.

6. Influence of graph structure on caching
overhead

The caching overhead is expressed relative to the
overhead for comparing all intermediate results with their
previous values. The chosen reference assumes each
intermediate result is compared exactly once to a cached
value. This is the absolute minimum needed to make
caching possible without data dependency information.
The simulated overheads are always lower than the chosen
reference, and the relative measure allows the comparison
of caching overhead for different graphs.

��

���

����

���� �������� ������

����	
��

����	
��

��
�	
��

��
�	
��

��
�	
��

�	��	
��

�	��	
��

�	��	
��

����	
��	
�����������	
����

� � � � �

��	�
��	
���

Figure 3 Effect of graph properties on caching
overhead

6.1 Overhead dependency on InputFraction

The MinCache overhead is caused by comparing
values for the input terminals, so naturally this overhead is
proportional to the InputFraction. The MedCache and
MaxCache scheme compare values for executed nodes as
well as for the input terminals, and these overheads will be
larger as more nodes are executed.

6.2 Overhead dependency on BranchFactor

The MinCache overhead remains unaffected by
variation of the BranchFactor. MaxCache overhead
increases with the BranchFactor for the same reason as the
calculation cost; more executed nodes require more
comparisons. The MedCache scheme compares only
values for executed nodes at the end of threads. Since
there are fewer threads for a high BranchFactor, a
maximum in the MedCache overhead occurs.

6.3 Overhead dependency on ThreadFraction

The overhead for the MaxCache and MedCache
scheme increases with the ThreadFraction about the same
way as the calculation cost. For very high, increasing
BranchFactor values, the MaxCache overhead will
increase with the decreasing ThreadFraction (just like the
calculation cost).

The MedCache overhead will decrease with the
decreasing ThreadFraction at a level somewhat above the
overhead for normal BranchFactor values. Plotting
MinCache overhead as a function of ThreadFraction
doesn’t make much sense, as it depends only on the
number of input terminals.

7. Influence of node and interaction
properties on caching overhead

��

���

����

�� �������

����	
��

��
�	
��

�	��	
��

�	�
��	
���

�� �������

����	
��

��
�	
��

�	��	
��

�	���
��	
����

Figure 4 Effect of node and interaction
properties on caching overhead

7.1 Overhead dependency on ChanceFactor

The MinCache overhead is independent of the
ChanceFactor. A high ChanceFactor reduces the number
of nodes to be executed and thereby also reduces the
number of results to be compared to cached values for the
MaxCache and MinCache scheme. The effectiveness of
comparing extra results increases with the ChanceFactor,
and for very high ChanceFactor values the MaxCache
scheme actually performs less comparisons than the
MedCache scheme.

7.2 Overhead dependency on ChangedFraction

If the system knows which input settings were updated
by the user, only an updated setting will be checked for
change, and the MinCache overhead is proportional to the
changed fraction. The additional overhead in the
MedCache and MaxCache schemes is proportional to the
number of executed nodes, so it will increase with
increasing ChangedFraction. The rate of increase will
depend on the other graph properties.

8. Cost and overhead combined

The trade-off between calculation cost and comparison
overhead will be determined by how these factors
compare for a specific system. This depends on the
implementation of comparison, on the average data size,
and the order of complexity of the operations in the
algorithm, as well as on the hardware platform running the
environment.

In Figure 5, the overhead/cost proportion is linearly
increased. As can be seen, no scheme is always superior to
all others, and general conclusions are not straightforward.
The curve for caching without the use of dataflow
information uses the minimum overhead for this scheme
(as the exact value depends on the unknown user

interaction history), and the same cost as the MaxCache
scheme is assumed.

� ��� ��� ��� ��� ��� ��� ��	 ��
 ��� �
���������	
�����
��

�
������������
������������������
�

�������
�	
�����

��������

��������

�������	��������������

��
��
��
�
�
��

���

��

����

����

����

����

�
��

� ��� ��� ��� ��� ��� ��� ��	 ��
 ��� �
���������	
�����
��

�
����������
����������������������

��������

�	
�����

�������

�������	��������������

��������
��
��
��
�
�
��

���

���

��

����

����

����

����

� ��� ��� ��� ��� ��� ��� ��	 ��
 ��� �
���������	
�����
��

�
�������������������������������
��

�������

�	
�����

��������

��������

�������	����������������
��
��
�
�
��

��

���

���

���

��

����

����

Figure 5 Total Cost (calculation + overhead)
for increasing relative comparison cost.

The figure on top shows the total cost for graphs with
low ChanceFactor and high InputFraction. The benefit of
caching is small, and it is hard to say which caching
scheme is superior. Not using caching is more effective
than any caching scheme as soon as the overhead rises
above 70% of the cost.

The middle figure is for medium ChanceFactor and
InputFraction values (medium relative to the average of
the simulations, not necessarily for realistic graphs). It
appears the MedCache scheme is only cheaper than the
MaxCache when the MinCache scheme outperforms both.

For high ChanceFactor, low InputFraction (bottom
figure), very different results are obtained. Caching is
always effective, and there is no question that the
MaxCache scheme is superior, and that it is very effective
even when the cost of caching without using dataflow

information exceeds the total calculation cost without
caching.

��
�

�

������

�

�
�
�
�
�
�
�
�
�	
�

�

���������	
��

������

�
�

��
�

��
�

��
�

��
��

��

���

���

���

���

���

�

Figure 6 Overhead relative to cost for some
typical complexities

Most likely the overhead is lower than the calculation
cost, depending on the complexity of the operations and
the data size. As Figure 6 demonstrates, the caching
overhead quickly becomes insignificant compared to the
calculation cost for algorithms with a calculation
complexity of order n2 or higher. In that case, whether or
not dataflow information is used becomes unimportant
from the overhead point of view.

Considering this, the data size and algorithm
complexity will also determine areas where caching can
be effective. Five different areas can be identified.
1. For simple operations on small data sets, caching is

just unnecessary.
2. For more complex operations, caching can be

worthwhile to reduce calculation cost, even on small
data sets. However, when the data size is small, the
caching overhead and the required cache size are
insignificant and the use of dataflow information to
reduce these quantities is unnecessary.

3. For moderately complex algorithms executed on large
amounts of data, caching will reduce the calculation
cost while dataflow information can reduce the
caching overhead.

4. For high complexity calculations, the caching
overhead is insignificant relative to the calculation
cost, even if the overhead is large in an absolute
sense. The use of dataflow information to reduce the
overhead will only marginally affect the execution
time.

5. For large data sets, dataflow information can be
useful to reduce the cache size, even for complex
algorithms where the caching overhead is
insignificant.

The resulting areas are summarised in Figure 7 (note
that the scale and the relative proportions of the areas are
drawn arbitrarily).

���������

	�	
������
�����
��
���
����������

	�	
���
��
���
�����������������
�
���	��	��������	���

���������������
��������������
����	���
��
���
�������
�
���

���������������
��������������

����	��	�	
������
�������
�
���

��
��
��
��
	

�
�	
��

�
��
�

�������
����������
����������
	�	
���

Figure 7 Effect of data size and algorithm
complexity on the usefulness of caching

8.1 Areas of caching scheme effectiveness

Because none of the caching schemes is consistently
superior, we will attempt to identify areas of effectiveness
for the various schemes. The sum of the calculation cost
and caching overhead is compared for the three caching
methods, and for total recalculation without caching
(NoCache on the figures).

The ChanceFactor was found to have a strong
influence on the effectiveness of caching. The
InputFraction, ThreadFraction and BranchFactor are not
independent but interrelated. From these last three the
ThreadFraction is the most general and most capable of
explaining the variations in cost and overhead, however
the InputFraction produces somewhat more easily
readable figures.

Figure 8 shows the density distribution of graph
parameters for which each caching scheme offers the most
economical solution. The elevation in the 3D mesh
represents the number of graphs for which the scheme
produces the lowest cost, relative to the total number of
samples in the local area. To improve clarity in the
figures, a surface is interpolated for grid points where no
values were available.

It is clear that regions of effectiveness can be defined,
even though the schemes may be preferable for less than
100% of the graphs in their regions. It must be noted that
the very high InputFractions, where the graph contains far
more input terminals than nodes, and high ChanceFactors,
are included only to make the global cost behaviour more
apparent, not because such graphs would be typical for the
structure of any real application (a graph with an
InputFraction of 0 or 1 is impossible).

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

NoCache

InputFractionChanceFactor 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
NoCache

InputFraction
C

ha
nc

eF
ac

to
r

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

MinCache

InputFractionChanceFactor 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
MinCache

InputFraction

C
ha

nc
eF

ac
to

r

0

0.5

1

0

0.5

1
0

0.1

0.2

0.3

0.4

MedCache

InputFractionChanceFactor 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
MedCache

InputFraction

C
ha

nc
eF

ac
to

r

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
MaxCache

InputFraction

C
ha

nc
eF

ac
to

r

Figure 8 Areas of method effectiveness

For a high InputFraction and a low ChanceFactor, the
difference in overhead between the MinCache scheme and
the other caching schemes is the largest. For a higher
ChanceFactor, the other caching schemes become more
effective, whereas the performance of the MinCache
scheme doesn’t depend on the ChanceFactor.

The MedCache scheme seems to be most effective for
a minority of graphs only, but spread over a large area.
For a high InputFraction, the MedCache overhead will
become important, while the MaxCache scheme will
benefit more from a high ChanceFactor. Note that there
are other factors besides performance, such as the required
cache space, which were not taken into account to
determine these areas of method effectiveness.

The MaxCache scheme appears to be preferable for the
majority of graphs with low InputFraction, especially
when the ChanceFactor is high as well. For a very high
InputFraction, most nodes will have at least one input

terminal as argument. In such a graph the caching scheme
is not able to exploit the high ChanceFactor. For a zero or
very low ChanceFactor, the MinCache scheme performs
best.

Figure 9 shows the influence of the overhead
importance on the areas of caching effectiveness. In the
lightest area the MaxCache is the most effective scheme,
darkest means caching is ineffective. Dark grey represents
the MinCache scheme, light grey the MedCache scheme.
Figure 9 also shows ChanceFactor/ThreadFraction graphs.

Note the areas of effectiveness for a overhead
importance of 100%, which corresponds to a total caching
overhead that equals the total calculation cost. In an
environment that doesn’t make use of dataflow
information, such conditions would completely exclude
caching as a measure to increase performance. However,
Figure 9 clearly indicates that a caching scheme assisted
by dataflow information can still perform effectively
under these conditions.

Figure 9 Influence of overhead importance:
1%, 50% and 100%

The areas of effectiveness in the previous figures were
constructed assuming all input states are equally likely,
which corresponds to an average ChangedFraction of
50%. Changing only a small fraction of the input terminals
during each interaction will benefit caching, while leaving
only a few input terminals unchanged during each

interaction will have an adverse effect on the effectiveness
of caching.

Figure 10 show the (interpolated) areas of method
effectiveness for average ChangedFractions of 25%, 50%,
and 75% (overhead importance 50%).

Figure 10 Influence of the ChangedFraction:
25%, 50% and 75%

Note that the area of best performance for the
MaxCache scheme changes little. The ChangedFraction
has more effect on the other schemes.

For a low ChangedFraction, the calculation cost is
almost identical for the three caching schemes, but the
lower overhead of the MedCache and MinCache schemes
can make these schemes even more effective than the
MaxCache scheme. For a high ChangedFraction, the cost
difference between the caching schemes is more
pronounced.

For a zero ChanceFactor, the MedCache and
MaxCache scheme reduce the calculation cost only as
much as the MinCache scheme, but at the cost of a much
higher overhead. As a result, the MinCache scheme is the
most effective scheme for low ChanceFactor values,
unless the ChangedFraction is too high to make caching
profitable (for zero ChanceFactor).

9. Conclusion

Caching can result in significant time savings in
applications that are often and repeatedly executed with
largely identical values. Dataflow information, as
available in dataflow-based environments, can be used to
reduce cache overhead and to limit the memory space
required by caching. Different caching schemes were
suggested, appropriate for different types of dataflow
graph or user interaction. Methods (mathematical and
based on simulations) were presented to determine the
caching scheme best suited for a particular algorithm, and
to estimate the possible savings.

References

[1] E. C. Baroth, C. Hartsough, “Experience report: Visual
Programming in the Real World”, Visual Object
Oriented Programming, M. M. Burnett, A. Goldberg, T.
G. Lewis (editors), Manning Publications, Prentice Hall,
1995, pp 21-22.

[2] B. W. Char, Maple User’s Guide. Waterloo, Ontario,
WATCOM Publications, 1988.

[3] V. K. Chaudri, R. Greiner, “A Formal Analysis of
Solution Caching”, Proceedings of the Canadian
Artificial Intelligence Conference, Vancouver, 11-15
May, 1992.

[4] IBM Visualisation Data Explorer User’s Guide 3.1.4,
IBM Corporation, May 1997.

[5] F. M. Rijnders, A visual programming environment for
scientific applications: possibilities and limitations,
academisch proefschrift ter verkrijging van de graad van
doctor aan de Vrije Universiteit te Amsterdam, 29 juni
1995.

[6] E. Steenput, Y. Rolain, “Auto-Consistent Mathematical
Environment for Measurement Software Development”,
Proceedings of the IEEE Instrumentation and
Measurement Technology Conference, Brussels,
Belgium, June 4-6, 1996, Volume I, pp 21-26.

[7] E. Steenput, Y. Rolain, “Data Consistency and
Redundant Operations in Measurement System
Development”, Proceedings of the IEEE Workshop on
Emergent Technologies & Virtual Systems for
Instrumentation and Measurement, Niagara Falls,
Ontario, Canada, May 15-16, 1997, pp 112-117.

[8] E. Steenput, Y. Rolain, “Auto-Consistent Environment
for Measurement Software Development”, IEEE
Transactions on Instrumentation and Measurement,
Volume 46, number 4, August 1997, pp 742-746.

[9] E. Steenput, Y. Rolain, “Caching of intermediate results
in dataflow environments”, Proceedings of the IEEE
Workshop on Emergent Technologies & Virtual Systems
for Instrumentation and Measurement, Minnesota Club,
St. Paul, MN, USA, May 15-16, 1998, pp 138-147.

[10] A. Woodruff, M. Stonebraker, “Buffering of
Intermediate Results in Dataflow Diagrams”,
Proceedings of the IEEE Symposium on Visual
Languages, Darmstadt, Germany, September 1995.

